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Introduction

This lecture course is a continuation of the course Algebraic Geometry 1
which covered the definition of schemes, and some basic notions about
schemes and scheme morphisms: Reduced and integral schemes, immersions
and subschemes, the functorial point of view, fiber products of schemes, sep-
arated and proper morphisms.

The main object of study of this term’s course will be the notion of OX -
module, a natural analogue of the notion of module over a ring in the context
of sheaves of rings. As we will see, the OX -modules on a scheme X contain
a lot of information about the geometry of this scheme, and we will study
them using a variety of methods. In the second part, we will introduce
the notion of cohomology groups, a powerful algebraic tool that makes its
appearance in many areas of algebra and geometry.

These notes are not complete lecture notes (most proofs are omitted in the
notes), but should rather be thought of as a rough summary of the content
of the course.

1. OX-modules
April 8,
2019General references: [GW] Ch. 7, [H] II.5.

Definition and basic properties.

(1.1) Definition of OX-modules.

Definition 1.1. Let (X,OX) be a ringed space. An OX-module is a sheaf
F of abelian groups on X together with maps

OX(U)×F (U)→ F (U) for each openU ⊆ X
1
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giving each F (U) the structure of an OX(U)-module, and which are com-
patible with the restriction maps for open subsets U ′ ⊆ U ⊆ X.

An OX-module homomorphism F → G between OX-modules F , G on X
is a sheaf morphism F → G such that for all open subsets U ⊆ X, the map
F (U) → G (U) is a homomorphism of OX(U)-modules. We denote the set
of OX-module homomorphisms from F to G by HomOX (F ,G ); this is an
OX(X)-module (and in particular an abelian group).

We obtain the category (OX -Mod) of OX -modules.

Remark 1.2. If F is an OX -module and x ∈ X, then the stalk Fx

carries a natural OX,x-module structure. The κ(x)-vector space F (x) :=
Fx ⊗OXx

κ(x) is called the fiber of F over x.

Constructions, examples 1.3. Let X be a ringed space, F an OX -
module.

(1) OX ,

(2) submodules and quotients,

(3) ⊕,
∏

, ⊗, (filtered) inductive limits,

(4) kernels, cokernels, image, exactness; these are compatible with passing
to the stalks,

(5) restriction to open subsets: FX|U , U ⊆ X open,

(6) Hom, −∨,

The category of OX -modules is an abelian category.

Definition 1.4. Let F be an OX-module on the ringed space X. We call
F

(a) free, if it is isomorphic to
⊕

i∈I OX for some set I,

(b) locally free, if there exists an open covering X =
⋃
j Uj of X such that

F|Uj is a free OUj -module for each j.

The rank of a free OX-module is the cardinality of I as above (we usually
regard it in Z∪{∞}, without making a distinction between infinite cardinals).
The rank of a locally free OX-module is a function X → Z ∪ {∞} which is
locally constant on X (i.e., on each connected component of X, there is an
integer giving the rank).

An invertible sheaf or line bundle on X is a locally free sheaf of rank 1.

For L invertible, there is a natural isomorphism L ⊗OX L ∨ ∼= OX

(whence the name), cf. Problem 1. Hence ⊗ induces a group structure
on the set of isomorphism classes of invertible sheaves in X. The resulting
group is called the Picard group of X and denoted by Pic(X).

(1.2) Inverse image.
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Definition 1.5. Let f : X → Y be a morphism of ringed spaces, and let F
be an OX-module. Then f∗F carries a natural OY -module structure and is
called the direct image or push-forward of F under f .

Definition 1.6. Let f : X → Y be a morphism of ringed spaces, F an
OY -module.

We define
f∗F := f−1F ⊗f−1OY OX .

For x ∈ X, we have (f∗F )x
∼= Ff(x) ⊗OY,f(x) OX,x.

We obtain functors f∗, f
∗ between the categories of OX -modules and OY -

modules.

Proposition 1.7. Let f : X → Y be a morphism of ringed spaces. The
functors f∗ is right adjoint to the functor f∗:

HomOX (f∗G ,F ) ∼= HomOY (G , f∗F )

for all OX-modules F , all OY -modules G , functorially in F and G .
April 10,
2019

Quasi-coherent OX-modules.

(1.3) The OSpecA-module attached to an A-module M .

Definition 1.8. Let A be a ring and M an A-module. Then setting

D(f) 7→Mf , f ∈ A,
is well-defined and defines a sheaf on the basis of principal open sets in

SpecA. We denote the corresponding sheaf on SpecA by M̃ . It is an
OSpecA-module (by viewing each Mf as an Af -module in the natural way).

Remark 1.9. For an affine scheme X, in general not every OX -module
has the above form. We will investigate this more closely soon.

Proposition 1.10. Let A be a ring, and let M , N be A-modules. Then
the maps

HomA(M,N)→ HomOSpecA
(M̃, Ñ)

given by

ϕ 7→ f̃ := (ϕf : Mf → Nf )f
and, in the other direction,

Φ 7→ Γ(SpecA,Φ),

are inverse to each other. In other words, ·̃ is a fully faithful functor from
the category of A-modules to the category of OSpecA-modules.

By applying the proposition to M = A, we also see that for an A-module

N , Ñ is zero if and only if N is zero.
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The constructionM 7→ M̃ is compatible with exactness, kernels, cokernels,
images, direct sums, filtered inductive limits. (Cf. [GW] Prop. 7.14 for a
more precise statement.)

(1.4) Quasi-coherent modules.

Definition 1.11. Let X be a ringed space. An OX-module F is called
quasi-coherent, if every x ∈ X has an open neighborhood U such that there
exists an exact sequence

O
(J)
U → O

(I)
U → F|U → 0

for suitable (possibly infinite) index sets I, J .

For a morphism f : X → Y of ringed spaces and a quasi-coherent OY -
module G , the pull-back f∗G is a quasi-coherent OX -module (since f−1 is
exact and tensor product is a right exact functor). The direct image f∗
preserves the property of quasi-coherence (only) under certain conditions.

Locally free OX -modules are quasi-coherent.

Clearly, for a ring A and an A-module M , M̃ is a quasi-coherent OSpecA-
module. We will see below that the converse is true as well:

For a ringed space X and f ∈ Γ(X,OX), we write Xf := {x ∈ X; fx ∈
O×X,x}, an open subset of X. We obtain a homomorphism

Γ(X,F )f → Γ(Xf ,F )

for every OX -module F .

Theorem 1.12. Let X be a scheme and F an OX-module. The following
are equivalent:

(i) For every affine open SpecA = U ⊆ X, there exists an A-module M

such that F|U ∼= M̃ .

(ii) There exists a covering X =
⋃
i Ui by affine open subschemes Ui =

SpecAi and Ai-modules Mi such that F|Ui
∼= M̃i for all i.

(iii) The OX-module F is quasi-coherent.
(iv) For every affine open SpecA = U ⊆ X and every f ∈ A, the homo-

morphism Γ(U,F )f → Γ(D(f),F ) is an isomorphism.

April 15,
2019 Corollary 1.13. Let A be a ring, X = SpecA. The functor ·̃ induces an

exact equivalence between the categories of A-modules and of quasi-coherent
OX-modules.

Corollary 1.14. Let X be a scheme.

(1) Kernels, cokernels, images of OX-module homomorphisms between quasi-
coherent OX-modules are quasi-coherent.

(2) Direct sums of quasi-coherent OX-modules are quasi-coherent.
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(3) Let F , G be quasi-coherent OX-module. Then F ⊗OX G is quasi-
coherent, and for every affine open U ⊆ X we have

Γ(U,F ⊗ G ) = Γ(U,F )⊗ Γ(U,G ).

In particular, by (1) and (2) the category of quasi-coherent OX-module is
an abelian category, and the inclusion functor into the category of all OX-
modules preserves kernels and cokernels and direct sums.

(1.5) Direct and inverse image of quasi-coherent OX-module.

Proposition 1.15. Let X = SpecB, Y = SpecA be affine schemes, and
let f : X → Y be a scheme morphism.

(1) Let N be an B-module, then f∗(Ñ) = Ñ[A] where N[A] is N , considered
as an A-module via Γ(f) : A→ B.

(2) Let M be an A-module, then f∗(M̃) = M̃ ⊗A B.

(1.6) Finiteness conditions.

Definition 1.16. We say that an OX-module F is of finite type (or of
finite presentation, resp.), if every x ∈ X has an open neighborhood U ⊆ X
such that there exists n ≥ 0 (or m,n ≥ 0, resp.) and a short exact sequence

On
X → F → 0

(or

Om
X → On

X → F → 0,

resp.).

On an affine scheme, this coincides with the corresponding definitions in

terms of modules (via M 7→ M̃). Note that every OX -module of finite pre-
sentation is quasi-coherent. On a noetherian scheme, every quasi-coherent
OX -module of finite type is of finite presentation.

Proposition 1.17. Let X be a ringed space and let F be an OX-module of
finite presentation.
(1) For all x ∈ X and for each OX-module G , the canonical homomorphism

of OX,x-modules

HomOX (F ,G )x → HomOX,x(Fx,Gx)

is bijective.
(2) Let F and G be OX-modules of finite presentation. Let x ∈ X be a point

and let θ : Fx
∼→ Gx be an isomorphism of OX,x-modules. Then there

exists an open neighborhood U of x and an isomorphism u : F |U
∼→ G |U

of OU -modules with ux = θ.
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Proof. Problem 2. �

Proposition 1.18. Let X be a ringed space, and let F be an OX-module
of finite type. Then the support

Supp(F ) = {x ∈ X; Fx 6= 0}
of F is a closed subset of X.

Proof. Problem 6. �

(1.7) Closed subschemes and quasi-coherent ideal sheaves.

Proposition 1.19. Let X be a scheme. An ideal sheaf I ⊆ OX defines a
closed subscheme if and only if I is a quasi-coherent OX-module.

We hence obtain an inclusion-reversing bijection between the set of closed
subschemes of a scheme X and the set of quasi-coherent ideal sheaves in
OX , mapping

• a quasi-coherent ideal sheaf I to Z := (Supp(OX/I ), i−1(OX/I )),
where i : Supp(OX/I )→ X denotes the inclusion,
• a closed subscheme Z ⊆ X to Ker(OX → i∗OZ), where i : Z → X

denotes the inclusion morphism.

We denote the closed subscheme corresponding to a quasi-coherent ideal
sheaf I by V (I ).April 17,

2019

(1.8) Locally free sheaves on affine schemes.

There is an obvious “commutative algebra way” of writing down, for an

A-module M , the condition that M̃ is locally free.

Theorem 1.20. Let A be a ring and M an A-module. Consider the
following properties of M :

(i) M̃ is a locally free OSpecA-module.
(ii) M is locally free, i.e., there exist f1, . . . , fn ∈ A generating the unit ideal

such that for all i, the Afi-module Mfi is free.
(iii) For all p ∈ SpecA, the Ap-module Mp is free.
(iv) The A-module M is flat.

(1) We have the implications (i) ⇔ (ii) ⇒ (iii) ⇒ (iv).
(2) If M is an A-module of finite presentation, then all the three properties

are equivalent.

Proof. Part (1) is easy. Part (2) is more difficult. The implication (iv) ⇒
(iii) follows from Prop. 1.17. See [GW] Prop. 7.40. �

There is an obvious analogous theorem for OX -module on a scheme X,
where we define
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Definition 1.21. Let X be a scheme. An OX-module F is called flat, if
for all x ∈ X the stalk Fx is a flat OX,x-module.

More generally, given an OX-module F and a morphism f : X → Y we
say that F is f -flat or flat over Y , if for all x ∈ X the stalk Fx is a flat

OY,f(x)-module (via f ]x : OY,f(x) → OX,x).

If A is a domain, then every flat A-module M is torsion-free (i.e., multi-
plication by s is injective for all s ∈ A\{0}). The converse holds only rarely;
it does hold if A is a principal ideal domain and M is finitely generated.

Remark 1.22.

(1) Let A be a principal ideal domain. Then every finitely generated locally
free (in the sense of condition (i′) in the theorem) A-module is free. (Use
the structure theorem for finitely generated modules over principal ideal
domains.)

(2) It is a difficult theorem (conjectured by Serre, proved independently by
Quillen and Suslin) that every locally free sheaf of finite type on Ank , k
a field, is free. The same statement holds even for k a discrete valuation
ring.

(3) It will not be relevant in the course, but to complete the picture (and
since I did not remember the correct statement during the lecture . . . ),
let us remark that one can show that in the previous two items the
hypothesis of finite type can be omitted. In fact, whenever R is a ring
which is noetherian and such that SpecR is connected, then every locally
free R-module which is not finitely generated is free. One way to show
this to combine the paper [Ba] by H. Bass with the difficult theorem
that the property of a module of being “projective” can be checked
Zariski-locally on SpecA ([Stacks] 058B), which shows that all locally
free R-modules, finitely generated or not, are projective. Maybe there
is also a more direct way, without talking about projective modules?

(4) Let A be a noetherian unique factorization domain. Then every invert-
ible sheaf on SpecA is free.

(5) See the answers to this question (mathoverflow.net/q/54356) for ex-
amples of non-free locally free modules over SpecA for factorial (and
even, in addition, regular) noetherian rings A.

(6) Let A be a domain, and let M be a locally free A-module of rank 1.
Then M is isomorphic to a fractional ideal, i.e., to a finitely generated
sub-A-module of K := Frac(A). (Cf. Problem 8 for a converse statement
in the case that A is a Dedekind domain.)

2. Line bundles and divisors

General references: [GW] Ch. 11, in particular (11.9), (11.13); [H] II.6.

A divisor on a scheme X should be thought of an object that encodes a
“configuration of zeros and poles (with multiplicities)” that a function on X

https://mathoverflow.net/q/54356
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could have. Below, we will see two ways to make this precise and compare
them.

Let X be an integral (i.e., reduced and irreducible) scheme. We denote
by K(X) the field of rational functions of X.

Later we will impose the additional condition that X is noetherian and
that all local rings OX,x are unique factorization domains.

An important example that is good to keep in mind is the case of a
Dedekind scheme of dimension 1, i.e., X is a noetherian integral scheme
such that all points except for the generic point are closed, and such that
for every closed point x ∈ X the local ring OX,x is a principal ideal domain
(in other words: all local rings are discrete valuation rings), and the generic
point is not closed itself. If a Dedekind scheme X is a k-scheme of finite
type for some algebraically closed (or at least perfect) field k, then we call
X a smooth algebraic curve over k.

Cartier divisors.

(2.1) Cartier divisors: Definition.

Denote by K(X) = OX,η the field of rational functions on the integral
scheme X, where η ∈ X is the generic point. We denote by KX the constant
sheaf with value K(X), i.e., KX(U) = K(X) for all ∅ 6= U ⊆ X open. Since
X is irreducible, this is a sheaf.

The notion of Cartier divisor encodes a zero/pole configuration by specify-
ing, locally on X, functions with the desired zeros and poles. Since functions
which are units in Γ(U,OX) should be regarded as having no zeros and/or
poles on U , we consider functions only up to units.

Definition 2.1. A Cartier divisor on X is given by a tuple (Ui, fi)i, where
X =

⋃
i Ui is an open cover, fi ∈ K(X)×, and fi/fj ∈ Γ(Ui ∩ UJ ,OX)× for

all i, j. Two such tuples (Ui, fi)i, (V j, gj)j give rise to the same divisor, if

fig
−1
j ∈ Γ(Ui ∩ Vj ,OX)× for all i, j.

With addition given by

(Ui, fi)i + (Vj , gj)j = (Ui ∩ Vj , figj)i,j

the set Div(X) of all Cartier divisors on X is an abelian group.

Definition 2.2. A Cartier divisor of the form (X, f), f ∈ K(X)×, is called
a principal divisor. Divisors D, D′ on X are called linearly equivalent, if
D −D′ is a principal divisor. The set of principal divisors is a subgroup of
Div(X) and the quotient DivCl(X) of Div(X) by this subgroup is called the
divisor class group oX.
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(2.2) The line bundle attached to a Cartier divisor.

Let D be a Cartier divisor on X. We define an invertible OX -module
OX(D) as follows:

Γ(U,OX(D)) = {f ∈ K(X);∀i : fif ∈ Γ(U∩Ui,OX)} for ∅ 6= U ⊆ X open.

For each i, we have OX(D)|Uif
−1
i OUi ⊂ KX , so multiplication by fi gives

an OUi-module isomorphism OX(D)|Ui
∼= OUi .

Proposition 2.3. The map D 7→ OD(X) induces group isomorphisms
Div(X) ∼= {L ⊂ KX invertible OX-module} and DivCl(X) ∼= Pic(X).

To get a more geometric view on divisors, a first step is the following def-
inition of the support of a divisor. We will carry this further by introducing
the notion of Weil divisor, see below, and relating it to Cartier divisors.

Definition 2.4. The support of a Cartier divisor D is

Supp(D) = {x ∈ X; fi,x ∈ K(X)× \ O×X,x (wherex ∈ Ui)},

a proper closed subset of X.

Weil divisors.
April 24,
2019Now let X be a noetherian integral scheme such that all local rings OX,x

are factorial.

(2.3) Definition of Weil divisors.

Let Z1(X) denote the free abelian group on maximal proper integral sub-
schemes of X (equivalently: those integral subschemes Z ⊂ X such that
for the generic point ηZ ∈ Z we have dim OX,ηZ = 1). We say that Z has
codimension 1. We also write OX,Z := OX,ηZ .

By our assumptions on X, all the rings OX,Z are discrete valuation rings.
(Since they are noetherian domains of dimension 1 by assumption, it is
equivalent to require that they are integrally closed, or factorial, or that
they are regular.) We denote by vZ : K(X)× → Z the corresponding discrete
valuation on K, and set vZ(0) =∞.

Definition 2.5. An element of Z1(X) is called a Weil divisor. We write
Weil divisors as finite “formal sums”

∑
nZ [Z] where Z ⊂ X runs through

the integral closed subschemes of X of codimension 1.

For f ∈ K(X)×, we define the divisor attached to f as

div(f) =
∑
Z

vZ(f)[Z].
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Note that the sum is finite, i.e., vZ(f) = 0 for all but finitely many Z. Weil
divisors of this form are called principal Weil divisors. Two Weil divisors
are called linearly equivalent, if their difference is a principal divisor.

(2.4) Weil divisors vs. Cartier divisors.

Generalizing the definition of principal divisors, we can construct a group
homomorphism cyc: Div(X)→ Z1(X) as follows:

D = (Ui, fi) 7→
∑

vZ(fiZ )[Z],

where for each Z we choose an index iZ so that UiZ contains the generic
point of Z (equivalently: UiZ ∩ Z 6= ∅).

Proposition 2.6. The map cyc is a group isomorphism Div(X) ∼= Z1(X).
Under this isomorphism, the subgroups of principal divisors on each side
correspond to each other, whence it induces an isomorphism DivCl(X) ∼=
Cl(X) ∼= Pic(X).

(2.5) The theorem of Riemann and Roch.

No proofs were given in the lecture for the following results.
Reference: [H] IV.1.

Now let X a Dedekind scheme which is a scheme of finite type over an
algebraically closed field k. In addition we assume that there exist n ≥ 1
and a closed immersion X ↪→ Pnk .

For a (Weil) divisor D =
∑

Z nZ [Z] we define the degree deg(D) of D as
deg(D) :=

∑
Z nZ . We obtain a group homomorphism Z1(X) → Z. Under

our assumption that X is a closed subscheme of some projective space, one
can show that this homomorphism factors through Cl(X):

Theorem 2.7. Let f ∈ K(X). Then deg(div(f)) = 0.

We can now state (a simplified version of) the Theorem of Riemann–Roch.
For a divisor D we write `(D) = dimk Γ(X,OX(D)).

Proposition 2.8. For each D, `(D) is finite. If `(D) ≥ 0, then deg(D) ≥
0.

Theorem 2.9. (Riemann-Roch) For X as above, there exist g ∈ Z≥0 and
K ∈ Div(X) such that for every divisor D on X, we have

`(D)− `(K −D) = deg(D) + 1− g.

Corollary 2.10. In the above situation, we have
(1) `(K) = g,
(2) deg(K) = 2g − 2,
(3) for every D with deg(D) > 2g − 2, we have `(D) = deg(D) + 1− g.



ALGEBRAIC GEOMETRY 2, SS 19 11

The number g is called the genus of the curve X. For X as above which
is of the form V+(f) ⊂ P2

k, there is the following formula for the genus:

Proposition 2.11. Let X as above be of the form V+(f) ⊂ P2
k for a

homogeneous polynomial f of degree d. Then the genus g of X is given by

g =
(d− 1)(d− 2)

2
.

3. Smoothness and differentials
April 29,
2019General reference: [GW] Ch. 6.

The Zariski tangent space.

(3.1) Definition of the Zariski tangent space.

Definition 3.1. Let X be a scheme, x ∈ X, mx ⊂ OX,x the maximal ideal
in the local ring at x, κ(x) the residue class field of X in x. The κ(x)-vector
space (m/m2)

∗
is called the (Zariski) tangent space of X in x.

Definition 3.2. Let R be a ring, f1, . . . , fr ∈ R[T1, . . . , Tn]. We call the
matrix

Jf1,...,fr :=

(
∂fi
∂Tj

)
i,j

∈Mr×n(R[T•])

the Jacobian matrix of the polynomials fi. Here the partial derivatives are
to be understood in a formal sense.

Remark 3.3.
(1) If in the above setting the ideal m is finitely generated, then dimκ(x) TxX

is the minial number of elements needed to generate m and in particular
is finite.

(2) The tangent space construction if functorial in the following sense: Given
a scheme morphism f : X → Y and x ∈ X such that dimκ(x) TxX is finite
or [κ(x) : κ(f(x))] is finite, then we obtain a map

dfx : TxX → Tf(x)Y ⊗κ(f(x)) κ(x).

Example 3.4. Let k be a field, X = V (f1, . . . , fm) ⊆ Ank , fi ∈ k[T1, . . . , Tn],
x = (xi)i ∈ kn = An(k). Then there is a natural identification TxX =
Ker(Jf1,...,fm(x)), where Jf1,...,fm(x) denotes the matrix with entries in κ(x) =
k obtained by mapping each entry of Jf1,...,fm to κ(x), which amounts to
evaluating these polynomials at x.

Proposition 3.5. Let k be a field, X a k-scheme, x ∈ X(k). There is an
identification (functorial in (X,x))

X(k[ε]/(ε2))x := {f ∈ Homk(Spec k[ε]/(ε2), X); im(f) = {x}} = TxX.
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Smooth morphisms.

(3.2) Definition of smooth morphisms.

Definition 3.6. A morphism f : X → Y of schemes is called smooth of
relative dimension d ≥ 0 in x ∈ X, if there exist affine open neighborhoods
U ⊆ X of x and V = SpecR ⊆ Y of f(x) such that f(U) ⊆ V and an open
immersion j : U → SpecR[T1, . . . , Tn](f1, . . . , fn−d) such that the triangle

U SpecR[T1, . . . , Tn](f1, . . . , fn−d)

V

f

j

is commutative, and that the Jacobian matrix Jf1,...,fn−d(x) has rank n−d.
We say that f : X → Y is smooth of relative dimension d if f is smooth

of relative dimension d at every point of X. Instead of smooth of relative
dimension 0, we also use the term Ã©tale.

With notation as above, if f is smooth at x ∈ X, then x as an open
neighborhood such that f is smooth at all points of this open neighborhood.
Clearly, AnS and PnS are smooth of relative dimension n for every scheme
S. (It is harder to give examples of non-smooth schemes directly from the
definition; we will come back to this later.)May 6,

2019

(3.3) Dimension of schemes.

Recall from commutative algebra that for a ring R we define the (Krull)
dimension dimR of R as the supremum over all lengths of chains of prime
ideals, or equivalently as the dimension of the topological space SpecR in
the sense of the following definition.

Definition 3.7. Let X be a topological space. We define the dimension of
X as

dimX := sup{`; there exists a chain Z0 ) Z1 ) · · · ) Z`

of closed irreducible subsets Zi ⊆ X}.

We will use this notion of dimension for non-affine schemes, as well. Recall
the following theorem about the dimension of finitely generated algebras over
a field from commutative algebra:

Theorem 3.8. Let k be a field, and let A be a finitely generated k-algebra
which isi a domain. Let m ⊂ A be a maximal ideal. Then

dimA = trdegk(Frac(A)) = dimAm.

By passing to an affine cover, we obtain the following corollary:
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Corollary 3.9. Let k be a field, and let X be an integral k-scheme which
is of finite type over k. Denote by K(X) its field of rational functions. Let
U ⊆ X be a non-empty open subset, and let x ∈ X be a closed point. Then

dimX = dimU = trdegk(K(X)) = dim OX,x.

(3.4) Existence of smooth points.

Let k be a field.

Lemma 3.10. Let X, Y be [integral1] k-schemes which are locally of finite
type over k. Let x ∈ X, y ∈ Y , and let ϕ : OY,y → OX,x be an isomorphism
of k-algebras. Then there exist open neighborhoods U of x and V of y and

an isomorphism h : U → V of k-schemes with h]x = ϕ.

Proposition 3.11. Let X be an integral k-scheme of finite type. Assume
that K(X) ∼= k(T1, . . . , Td)[α] with α separable algebraic over k(T1, . . . , Td).
(This is always possible if k is perfect.) (Then dimX = d by the above.)

Then there exists a dense open subset U ⊆ X and a separable irreducible
polynomial g ∈ k(T1, . . . , Td)[T ] with coefficients in k[T1, . . . , Td], such that
U is isomorphic to a dense open subset of Spec k[T1, . . . Td]/(g).

Theorem 3.12. Let k be a perfect field, and let X be a nonempty reduced
k-scheme locally of finite type over k. Then the smooth locus

Xsm := {x ∈ X; X → Spec k is smooth inx}

of X is open and dense.
May 8,
2019

(3.5) Regular rings.

For references to the literature, see [GW] App. B, in particular B.73, B.74,
B.75

Definition 3.13. A noetherian local ring A with maximal ideal m and
residue class field κ is called regular, if dimA = dimκm/m

2.

One can show that the inequality dimA ≤ dimκm/m
2 always holds.

Therefore we can rephrase the definition as saying that A is regular if m
has a generating system consisting of dimA elements.

Definition 3.14. A noetherian ring A is called regular, if Am is regular
for every maximal ideal m ⊂ A.

We quote the following (mostly non-trivial) results about regular rings:

1The statement is true in general, but in the lecture we proved it only with the addi-
tional assumption that X and Y are integral.
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Theorem 3.15.

(1) Every localization of a regular ring is regular.

(2) If A is regular, then the polynomial ring A[T ] is regular.

(3) (Theorem of Auslander–Buchsbaum) Every regular local ring is factorial.

(4) Let A be a regular local ring with maximal ideal m and of dimension d,
and let f1, . . . , fr ∈ m. Then A/(f1, . . . , fr) is regular of dimension d−r
if and only if the images of the fi in m/m2 are linearly independent over
A/m.

(3.6) Smoothness and regularity.

Let k be a field.

Lemma 3.16. Let X be a k-scheme locally of finite type. Let x ∈ X
such that X → Spec k is smooth of relative dimension d in x. Then OX,x is
regular of dimension ≤ d. If moreover x is closed, then OX,x is regular of
dimension d.

Lemma 3.17. Let X = V (g1, . . . , gs) ⊆ Ank , and let x ∈ X be a closed
point. If rk Jg1,...,gs(x) ≥ n − dim OX,x, then x is smooth in X/k, and
rk Jg1,...,gs(x) = n− dim OX,x.

Theorem 3.18. Let X be a k-scheme locally of finite type, x ∈ X a closed
point, d ≥ 0. Fix an algebraically closed extension field K of k and write
XK = X ⊗k K. The following are equivalent:

(i) The morphism X → Spec k is smooth of relative dimension d at x.

(ii) For all points x ∈ XK lying over x, XK is smooth over K of relative
dimension d at x.

(iii) There exists a point x ∈ XK lying over x, such that XK is smooth over
K of relative dimension d at x.

(iv) For all points x ∈ XK lying over x, the local ring OXK ,x is regular of
dimension d.

(v) There exists a point x ∈ XK lying over x, such that the local ring OXK ,x

is regular of dimension d.

If these conditions hold, then the local ring OX,x is regular of dimension d,
and if κ(x) = k, then this last condition is equivalent to the previous ones.

May 13,
2019 Corollary 3.19. Let X be an irreducible scheme of finite type over k, and

let x ∈ X(k) be a k-valued point. Then X → Spec k is smooth at x if and
only if dimX = dimk TxX.

Corollary 3.20. Let X = V (g1, . . . , gs) ⊆ Ank and let x ∈ X be a smooth
closed point. Let d = dim OX,x. Then Jg1,...,gs(x) has rank n− d. In partic-
ular, s ≥ n− d.
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After renumbering the gi, if necessary, there exists an open neighborhood
U of x and an open immersion U ⊆ V (g1, . . . , gn−d), i.e., locally around x,
“X is cut out in affine space by the expected number of equations”.

Corollary 3.21. Let X be locally of finite type over k. The following are
equivalent:

(i) X is smooth over k.
(ii) X ⊗k L is regular for every field extension L/k.
(iii) There exists an algebraically closed extension field K of k such that

X ⊗k K is regular.

The sheaf of differentials.

General references: [M2] §25, [Bo] Ch. 8, [H] II.8.

(3.7) Modules of differentials.

Let A be a ring.

Definition 3.22. Let B be an A-algebra, and M a B-module. An A-
derivation from B to M is a homomorphism D : B → M of abelian groups
such that

(a) (Leibniz rule) D(bb′) = bD(b′) + b′D(b) for all b, b′ ∈ B,
(b) d(a) = 0 for all a ∈ A.

Assuming property (a), property (b) is equivalent to saying that D is a
homomorphism of A-modules. We denote the set of A-derivations B → M
by DerA(B,M); it is naturally a B-module.

Definition 3.23. Let B be an A-algebra. We call a B-module ΩB/A to-

gether with an A-derivation dB/A : B → ΩB/A a module of (relative, KÃ¤hler)
differentials of B over A if it satisfies the following universal property:

For every B-module M and every A-derivation D : B → M , there exists
a unique B-module homomorphism ψ : ΩB/A →M such that D = ψ ◦ dB/A.

In other words, the map HomB(ΩB/A,M)→ DerA(B,M), ψ 7→ ψ ◦ dB/A
is a bijection.

Lemma 3.24. Let I be a set, B = A[Ti, i ∈ I] the polynomial ring. Then

ΩB/A := B(I) with dB/A(Ti) = ei, the “i-th standard basis vector” is a
module of differentials of B/A.

So we can write ΩB/A =
⊕

i∈I BdB/A(Ti).

Lemma 3.25. Let ϕ : B → B′ be a surjective homomorphism of A-algebras,
and write b = Ker(ϕ). Assume that a module of differentials (ΩB/A, dB/A)
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for B/A exists. Then

ΩB/A/(bΩB/A +B′d(b))

together with the derivation dB′/A induced by dB/A is a module of differentials
for B′/A.

Corollary 3.26. For every A-algebra B, a module ΩB/A of differentials
exists. It is unique up to unique isomorphism.

May 15,
2019 We will see later that for a scheme morphism X → Y , one can construct

an OX -module ΩX/Y together with a “derivation” OX → ΩX/Y by gluing
sheaves associated to modules of differentials attached to the coordinate
rings of suitable affine open subschemes of X and Y .

Let ϕ : A → B be a ring homomorphism. For the next definition, we
will consider the following situation: Let C be a ring, I ⊆ C an ideal with
I2 = 0, and let

B C/I

A C

ϕ

be a commutative diagram (where the right vertical arrow is the canonical
projection). We will consider the question whether for these data, there
exists a homomorphism B → C (dashed in the following diagram) making
the whole diagram commutative:

B C/I

A C

ϕ

Definition 3.27. Let ϕ : A→ B be a ring homomorphism.

(1) We say that ϕ is formally unramified, if in every situation as above,
there exists at most one homomorphism B → C making the diagram
commutative.

(2) We say that ϕ is formally smooth, if in every situation as above, there
exists at least one homomorphism B → C making the diagram commu-
tative.

(3) We say that ϕ is formally Ã©tale, if in every situation as above, there
exists a unique homomorphism B → C making the diagram commuta-
tive.

Passing to the spectra of these rings, we can interpret the situation in
geometric terms: SpecC/I is a closed subscheme of SpecC with the same
topological space, so we can view the latter as an “infinitesimal thickening”
of the former. The question becomes the question whether we can extend
the morphism from SpecC/I to SpecB to a morphism from this thickening.
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Proposition 3.28. Let ϕ : A → B be a ring homomorphism. Then ϕ is
formally unramified if and only if ΩB/A = 0.

For an algebraic field extension L/K one can show that K → L is formally
unramified if and only if it is formally smooth if and only if L/K is separable.
Cf. Problem 27 and [M2] §25, §26 (where the discussion is extended to the
general, not necessarily algebraic, case).

Theorem 3.29. Let f : A→ B, g : B → C be ring homomorphisms. Then
we obtain a natural sequence of C-modules

ΩB/A ⊗B C → ΩC/A → ΩC/B → 0

which is exact.
If moreover g is formally smooth, then the sequence

0→ ΩB/A ⊗B C → ΩC/A → ΩC/B → 0

is a split short exact sequence.
May 20,
2019Theorem 3.30. Let f : A → B, g : B → C be ring homomorphisms.

Assume that g is surjective with kernel b. Then we obtain a natural sequence
of C-modules

b/b2 → ΩB/A ⊗B C → ΩC/A → 0,

where the homomorphism b/b2 → ΩB/A ⊗B C is given by x 7→ dB/A(x)⊗ 1.
If moreover g ◦ f is formally smooth, then the sequence

0→ b/b2 → ΩB/A ⊗B C → ΩC/A → 0

is a split short exact sequence.

(3.8) The sheaf of differentials of a scheme morphism.

Remark 3.31. Let again B an A-algebra. There is the following alternative
construction of ΩB/A: Let m : B ⊗A B → B be the multiplication map, and

let I = Ker(m). Then I/I2 is a B-module, and d : B → I/I2, b 7→ 1⊗b−b⊗1,
is an A-derivation. One shows that (I/I2, d) satisfies the universal property
defining (ΩB/A, dB/A).

We can use a similar definition as we used for ring homomorphisms above
to define the notions of formally unramified, formally smooth and formally
Ã©tale morphisms of schemes.

Definition 3.32. Let f : X → Y be a morphism of schemes.
(1) We say that f is formally unramified, if for every ring C, every ideal

I with I2 = 0, and every morphism SpecC → Y (which we use to
view SpecC and SpecC/I as Y -schemes), the composition with the
natural closed embedding SpecC/I → SpecC yields an injective map
HomY (SpecC,X)→ HomY (SpecC/I,X).
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(2) We say that f is formally smooth, if for every ring C, every ideal I
with I2 = 0, and every morphism SpecC → Y , the composition with
the natural closed embedding SpecC/I → SpecC yields a surjective map
HomY (SpecC,X)→ HomY (SpecC/I,X).

(3) We say that f is formally Ã©tale, if f is formally unramified and
formally smooth.

If f is a morphism of affine schemes, then f has one of the properties of
this definition if and only if the corresponding ring homomorphism has the
same property in the sense of our previous definition.

Lemma 3.33.
(1) Every monomorphism of schemes (in particular: every immersion) is

formally unramified.
(2) Let A → B → C be ring homomorphisms such that A → B is formally

unramified. Then we can naturally identify ΩC/A = ΩC/B.

Definition 3.34. Let X → Y be a morphism of schemes, and let M be
an OX-module. A derivation D : OX → M is a homomorphism of abelian
sheaves such that for all open subsets U ⊆ X, V ⊆ Y with f(U) ⊆ V , the
map O(U)→M (U) is an OY (V )-derivation.

Equivalently, D : OX →M is a homomorphism of f−1(OY )-modules such
that for every open U ⊆ X, the Leibniz rule

D(U)(bb′) = bD(U)(b′) + b′D(U)(b), ∀b, b′ ∈ Γ(U,OX)

holds.
We denote the set of all these derivations by DerY (OX ,M ); it is a Γ(X,OX)-

module.
May 22,
2019

Definition/Proposition 3.35. Let f : X → Y be a morphism of schemes.
The following three definitions give the same result (up to unique isomor-
phism), called the sheaf of differentials of f or of X over Y , denoted ΩX/Y

— a quasi-coherent OX-module together with a derivation dX/Y : OX →
ΩX/Y .
(i) There exists a unique OX-module ΩX/Y together with a derivation dX/Y : OX →

ΩX/Y such that for all affine open subsets SpecB = U ⊆ X, SpecA =

V ⊆ Y with f(U) ⊆ V , ΩX/Y = Ω̃B/A and dX/Y |U is induced by dB/A.

(ii) ΩX/Y = ∆∗(J /J 2), where ∆: X → X ×Y X is the diagonal mor-
phism, W ⊆ X ×Y X is open such that im(∆) ⊆ W is closed (if f
is separated we can take W = X ×Y X), and J is the quasi-coherent
ideal defining the closed subscheme ∆(X) ⊆W . The derivation dX/Y is
induced, on affine opens, by the map b 7→ 1⊗ b− b⊗ 1.

(iii) The quasi-coherent OX-module ΩX/Y together with dX/Y is character-
ized by the universal property that composition with dX/Y induces bijec-
tions

HomOX (ΩX/Y ,M )
∼→ DerY (OX ,M )
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for every quasi-coherent OX-module M , functorially in M .

The properties we proved for modules of differentials can be translated
into statements for sheaves of differentials:

Proposition 3.36. Let f : X → Y , g : Y ′ → Y be morphisms of schemes,
and let X ′ = X ×Y Y ′. Denote by g′ : X ′ → X the base change of g. There
is a natural isomorphism ΩX′/Y ′

∼= (g′)∗ΩX/Y , compatible with the universal
derivations.

Proposition 3.37. Let f : X → Y , g : Y → Z be morphisms of schemes.
Then there is an exact sequence

f∗ΩY/Z → ΩX/Z → ΩX/Y → 0

of OX-modules. If f is formally smooth, then the sequence

0→ f∗ΩY/Z → ΩX/Z → ΩX/Y → 0

is exact and splits locally on X.

Proposition 3.38. Let i : Z → X be a closed immersion with correspond-
ing ideal sheaf J ⊆ OX , and let g : X → Y be a scheme morphism. Then
there is an exact sequence

i∗(J /J 2)→ i∗ΩX/Y → ΩZ/Y → 0

of OZ-modules. If Z is formally smooth over Y , then the sequence

0→ i∗(J /J 2)→ i∗ΩX/Y → ΩZ/Y → 0

is exact and splits locally on Z.

Proposition 3.39. Let K be a field, and let X be a k-scheme of finite
type. Let x ∈ X(k). Then we have an isomorphism TxX = ΩX/k(x) between
the Zariski tangent space at x and the fiber of the sheaf of differentials of
X/k at x.

(3.9) Sheaves of differentials and smoothness.

We start by slightly rephrasing the definition of a smooth morphism.

Definition 3.40. A morphism f : X → Y of schemes is called smooth of
relative dimension d ≥ 0 in x ∈ X, if there exist affine open neighborhoods
U ⊆ X of x and V = SpecR ⊆ Y of f(x) such that f(U) ⊆ V and an open
immersion j : U → SpecR[T1, . . . , Tn](f1, . . . , fn−d) such that the triangle

U SpecR[T1, . . . , Tn](f1, . . . , fn−d)

V

f

j

is commutative, and that the images of df1, . . . , dfn−d in the fiber Ω1
AnR/R

⊗
κ(x) are linearly independent over κ(x). (We view x as a point of AnR via
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the embedding U → SpecR[T1, . . . , Tn](f1, . . . , fn−d)→ SpecR[T1, . . . , Tn] =
AnR.)

Proposition 3.41. Let f : X → S be smooth of relative dimension at x ∈
X. Then there exists an open neighborhood U of x such that the restriction
ΩX/Y |U (= ΩU/Y ) is free of rank d.

May 27,
2019 Theorem 3.42. Let k be an algebraically closed field, and let X be an

irreducible k-scheme of finite type. Let d = dimX. Then X is smooth over
k if and only if ΩX/k is locally free of rank d.

Proposition 3.43. Let f : X → S be smooth of relative dimension d
at x ∈ X. Then there exists an open neighborhood U of x such that the
restriction U → S of f to U is formally smooth.

Theorem 3.44. Let f : X → Y be a morphism locally of finite presentation
(e.g., if Y is noetherian and f is locally of finite type). Then f is smooth if
and only if f is formally smooth.

We skip the proof that smoothness implies formal smoothness, see for
instance [Bo] Ch. 8.5. (But cf. the previous proposition which shows that a
smooth morphism is at least “locally formally smooth”.)May 29,

2019

Projective schemes.

References: [GW], Ch. 8, Ch. 11, in particular Example 11.43, (8.5); [H]
II.6, II.7.

(3.10) Line bundles on Pnk .

Let R be a ring. We cover PnR by the standard charts Ui := D+(Ti),

as usual, and write Uij := Ui ∩ Uj . For d ∈ Z, the elements (Ti/Tj)
d ∈

Γ(Uij ,OPnR)× define isomorphisms OUi|Uij → OUj |Uij which give rise to a
gluing datum of the OUi-modules OUi . By gluing of sheaves, we obtain a
line bundle OPnR(d). (Cf. Problems 9, 10.)

Lemma 3.45. We obtain a group homomorphism Z→ Pic(PnR), d 7→ O(d).

Proposition 3.46. Writing R[T0, . . . , Tn]d for the submodule of homo-
geneous polynomials of degree d (with R[T0, . . . , Tn]d = 0 for d < 0), we
have

Γ(PnR,O(d)) ∼= R[T0, . . . , Tn]d

for all d ∈ Z.

Now let R = k be a field.
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The closed subscheme V+(T0) is a Weil divisor on Pnk , and it corresponds
to the Cartier divisor (Ui, T0/Ti)i. The corresponding line bundle is O(1).
By passing to multiples/negatives of this divisor, we can describe all O(d)
in a similar way. June 3,

2019
Remark 3.47. One can show that every locally free OP1

k
-module is iso-

morphic to a direct sum of line bundles. Note though that this statement is
not true for Pnk , n > 1.

Proposition 3.48. Let A be a unique factorization domain, and let Z =
V (p) ⊂ SpecA a closed irreducible subset of codimension 1, i.e., p 6= 0 is a
prime ideal which is minimal among all non-zero prime ideals. Then p is a
principal ideal, i.e., considering Z as a Weil divisor, it is principal.

Corollary 3.49. Let k be a field, and let Z ⊂ Ank be an integral closed
subscheme of codimension 1. Then Z = V (f) for some polynomial f .

Proposition 3.50. Let k be a field, and let Z ⊆ Pnk be an integral closed
subscheme of codimension 1. Then Z = V+(f) for some homogeneous poly-
nomial f .

Proposition 3.51. The above homomorphism Z→ Pic(Pnk), d 7→ O(d), is
an isomorphism.

Proposition 3.52. Let R be a ring. We have a short exact sequence

0→ ΩPnR/R → O(−1)n+1 → On → 0

of OX-modules.

(3.11) Functorial description of Pn.
June 5,
2019As we have seen last term, every scheme X defines a contravariant functor

T 7→ X(T ) := Hom(Sch)(T,X) from the category of schemes to the category
of sets. This functor determines X up to unique isomorphism. In this
section, we want to describe the functor attached in this way to projective
space PnR for R a ring.

Proposition 3.53. Let R be a ring, and let S be an R-scheme. There is
a bijection, functorial in S,

PnR(S) = {(L , α); L a line bundle on S,

α : On+1
S � L a surjectiveOS-module homom.}/ ∼=

Here we consider pairs (L , α), (L ′, α′) as isomorphic, if there exists an
OS-module isomorphism β : L → L ′ with α = α′ ◦ β.

Note that a homomorphism α : On+1
S � L corresponds to n + 1 global

sections in Γ(S,L ) (the “images of the standard basis vectors”). Thus
T0, . . . , Tn ∈ Γ(PnR,O(1)) give rise to a (surjective) homomorphism On+1

PnR
→
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O(1). Given a morphism S → PnR, we can pull this homomorphism back
to S and obtain an element of the right hand side in the statement of the
proposition.

Conversely, given a pair (L , α) on S, we can think of the corresponding
morphism S → PnR in terms of homogeneous coordinates (i.e., for K-valued
points for some fieldK), as follows: Denote by f0,→ fn ∈ Γ(S,L ) the global
sections corresponding to α. For a point x ∈ S, the fiber L (x) is a one-
dimensional κ(x)-vector space generated by the elements f0(x), . . . , fn(x)
(i.e., at least one of them ins 6= 0 – this holds since α is surjective). We
choose an isomorphism L (x) ∼= κ(x), and hence can view the fi(x) as
elements of κ(x). Then the morphism S → PnS maps x to (f0(x) : · · · :
fn(x)) ∈ Pn(κ(x)). While the individual fi(x), as elements of κ(x), depend
on the choice of isomorphism L (x) ∼= κ(x), the point (f0(x) : · · · : fn(x)) ∈
Pn(κ(x)) is independent of this choice.

(3.12) The Proj construction.

Reference: [GW] Ch. 13.

Definition 3.54.

(1) A graded ring is a ring A with a decomposition A =
⊕

d≥0Ad as abelian
groups such that Ad · Ae ⊆ Ad+e for all d, e. The elements of Ad are
called homogeneous of degree d.

(2) Let R be a ring. A graded R-algebra is a graded ring A together with a
ring homomorphism R→ A.

(3) A homomorphism A → B of graded rings (or graded R-algebras) is a
ring homomorphism (or R-algebra homomorphism, respectively) f : A→
B such that f(Ad) ⊆ Bd for all d.

(4) Let A be a graded ring. A graded A-module is an A-module M with
a decomposition M =

⊕
d∈ZMd such that Ad ·Me ⊆ Md+e for all d, e.

The elements of Md are called homogeneous of degree d.
(5) A homomorphism M → N of graded A-modules is an A-module homo-

morphism f : M → N such that f(Md) ⊆ Nd for all d.
(6) Let A be a graded ring and let M be a graded A-module. A homogeneous

submodule of M is a submodule N ⊆M such that N =
⊕

d∈Z(N ∩Md).
In this way, N is itself a graded A-module and the inclusion N ↪→M is
a homomorphism of graded A-modules. (And conversely, every injective
homomorphism of graded A-modules has a homogeneous submodule as
its image.) A homogeneous submodule of A is called a homogeneous
ideal.

Example 3.55. Let R be a ring. Then the polynomial ring R[T0, . . . , Tn]
is a graded R-algebra if we set R[T0, . . . , Tn]d to be the R-submodule of
homogeneous polynomials of degree d.

We now fix a graded ring A.
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For a homogeneous element f ∈ Ae, and a graded A-module M , the
localization Mf is a graded A-module via

Mf,d = {m
f i

; m ∈Md+ei}.

Applying this to A as an A-module, we obtain a grading on Af giving Af
the structure of a graded ring. Then Mf is a graded Af -module.

We define

M(f) := Mf,0,

the degree 0 part of Mf . Then A(f) is a ring and M(f) is an A(f)-module.

Example 3.56. Let R be a ring. Then

R[T0, . . . , Tn](Ti) = R[
T0
Ti
, . . . ,

Tn
Ti

].

Definition 3.57. We write A+ :=
⊕

d>0Ad, an ideal of A. A homogeneous
prime ideal p ⊂ A is called relevant if A+ 6⊆ p.

Definition 3.58. We denote by Proj(A) the set of all relevant homogeneous
prime ideals of A. We equip Proj(A) with the Zariski topology, by saying
that the closed subsets are the subsets of the form

V+(I) := {p ∈ Proj(A); I ⊆ p}.

for homogeneous ideals I ⊆ A.

For a homogeneous element f , we write D+(f) := Proj(A) \ V+(f).

Lemma 3.59. Let f ∈ A be a homogeneous element. Then the map

D+(f)→ SpecA(f), p 7→ (pAf ) ∩A(f)

is a homeomorphism.

Proposition 3.60. There is a unique sheaf O of rings on Proj(A) such
that

Γ(D+(f),O) = A(f)

for every homogeneous element f ∈ A and with restriction maps given by
the canonical maps between the localizations. The ringed space (Proj(A),O)
is a separated scheme which we again denote by Proj(A).

June 17,
2019Definition 3.61. Let R be a ring, and let X be an R-scheme. We say that

X is projective over R (or that the morphism X → SpecR is projective),
if there exist n ≥ 0 and a closed immersion X → PnR of R-schemes.

Theorem 3.62. Let R be a ring, and let X be a projective R-scheme.
Then X is proper over R.
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(3.13) Quasi-coherent modules on Proj(A).

Let A be a graded ring, X = ProjA. If M is a graded A-module, there is

a unique sheaf M̃ of OX -modules such that

Γ(D+(f), M̃) = M(f)

for every homogeneous element f ∈ A, and such that the restriction maps
for inclusions of the form D+(g) ⊆ D+(f) are given by the natural maps
between the localizations. This sheaf is a quasi-coherent OX -module.

Example 3.63. Let A(n) be the graded A-module defined by A(n) =⊕
d∈ZAn+d. We set OX(n) = Ã(n). If A = R[T0, . . . , Tn] for a ring R, so

that X = PnR, then this notation is consistent with our previous definition.

For f ∈ Ad, multiplication by fk defines an isomorphism

OX|D+(f)
∼→ OX(n)|D+(f).

In particular, if A is generated as an A0-algebra by A1, then OX(n) is a
line bundle.

Assume, for the remainder of this section, that A is generated as an A0-
algebra by A1. So X =

⋃
f∈A1

D+(f), and OX(n) is a line bundle.

For an OX -module F , write F (n) := F ⊗OX OX(n), and define a graded
A-module Γ∗(F ) by

Γ∗(F ) =
⊕
n∈Z

Γ(X,F (n)).

Lemma 3.64. For a graded A-module M , there is a natural map M →
Γ∗(M̃). For an OX-module F , there is a natural map Γ̃∗(F ) → F . If F
is quasi-coherent, then the latter map is an isomorphism.

Call a graded A-module M saturated, if the map M → Γ∗(M̃) is an
isomorphism.

Proposition 3.65. The functors M → M̃ and F → Γ∗(F ) define an
equivalence of categories between the category of saturated graded A-modules
and the category of quasi-coherent OX-modules.

4. Cohomology of OX-modules

General references: [We], [HS], [Gr], [KS].June 19,
2019

4.1. The formalism of derived functors.

(4.1) Complexes in abelian categories.

Reference: [We] Ch. 1.
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Let A be an abelian category (e.g., the category of abelian groups, the
category of R-modules for a ring R, the category of abelian sheaves on a
topological space X, the category of OX -modules on a ringed space X, or
the category of quasi-coherent OX -modules on a scheme X).

A complex in A is a sequence of morphisms

· · · Ai Ai+1 Ai+2 · · ·di di+1

in A (i ∈ Z), such that di+1 ◦ di = 0 for every i ∈ Z. The maps di are
called the differentials of the complex.

Given complexes A•, B•, a morphism A• → B• of complexes is a family
of morphisms f i : Ai → Bi such that the f i commute with the differentials
of A• and B• in the obvious way. With this notion of morphisms, we obtain
the category C(A) of complexes in A. This is an abelian category (kernels,
images, . . . are formed degree-wise); see [We] Thm. 1.2.3.

Definition 4.1. Let A• be a complex in A. For i ∈ Z, we call

hi(A•) := Ker(di)/ im(di−1)

the i-th cohomology object of A•. We obtain functors hi : C(A) → A.
We say that A• is exact at i, if hi(A•) = 0. We say that A• is exact, if
hi(A•) = 0 for all i.

Remark 4.2. Let 0 → A• → B• → C• → 0 be a sequence of morphisms
of complexes. The sequence is exact (in the sense that at each point the
kernel and image in the category C(A) coincide) if and only if for every i,
the sequence 0→ Ai → Bi → Ci → 0 is exact.

Proposition 4.3. Let 0 → A• → B• → C• → 0 be an exact sequence
of complexes in A. Then there are maps δi : hi(C•) → hi+1(A•) (called
boundary maps) such that, together with the maps induced by functoriality
of the hi, we obtain the long exact cohomology sequence

· · ·hi(A•)→ hi(B•)→ hi(C•)→ hi+1(A•)→ · · · .

Reference: [We] Thm. 1.3.1.

We need a criterion which ensures that two morphisms between complexes
induce the same maps on all cohomology objects. Reference: [We] 1.4.

Definition 4.4. Let f, g : A• → B• be morphisms of complexes. We say
that f and g are homotopic, if there exists a family of maps ki : Ai → Bi−1,
i ∈ Z, such that

f − g = dk + kd,

which we use as short-hand notation for saying that for every i,

f i − gi = di−1B ◦ ki + ki+1 ◦ diA.

In this case we write f ∼ g. The family (ki)i is called a homotopy.
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Proposition 4.5. Let f, g : A• → B• be morphisms of complexes which
are homotopic. Then for every i, the maps hi(A•) → hi(B•) induced by f
and g are equal.

In particular, if A• is a complex such that idA• ∼ 0, then hi(A•) = 0 for
all i, i.e., A• is exact.

Definition 4.6. Let A• and B• be complexes. We say that A• and B• are
homotopy equivalent, if there exist morphisms f : A• → B• and g : B• → A•

of complexes such that g ◦ f ∼ idA and f ◦ g ∼ idB. In this case, f and g
induce isomorphisms hi(A•) ∼= hi(B•) for all i.

June 24,
2019

(4.2) Left exact functors.

Let A, B be abelian categories. All functors F : A → B that we con-
sider are assumed to be additive, i.e., they induce group homomorphisms
HomA(A,A′)→ HomB(F (A), F (A′)) for all A, A′ in A.

Definition 4.7. A (covariant) functor F : A → B is called left exact, if
for every short exact sequence 0→ A′ → A→ A′′ → 0 in A, the sequence

0→ F (A′)→ F (A)→ F (A′′)

is exact.

Definition 4.8. A contravariant functor F : A → B is called left exact if
for every short exact sequence 0→ A′ → A→ A′′ → 0 in A, the sequence

0→ F (A′′)→ F (A)→ F (A′)

is exact.

Similarly, we have the notion of right exact functor. A functor which is left
exact and right exact (and hence preserves exactness of arbitrary sequences)
is called exact.

Let A0 ∈ A. Then the functors A 7→ HomA(A,A0) and A 7→ HomA(A0, A)
are left exact.

(4.3) δ-functors.

Reference: [We] 2.1.
Let A, B be abelian categories.

Definition 4.9. A δ-functor from A to B is a family (T i)i≥0 of functors
A → B together with morphisms δi : T i(A′′) → T i+1(A′) (called boundary
morphisms) for every short exact sequence 0 → A′ → A → A′′ → 0 in A,
such that the sequence

0→ T 0(A′)→ T 0(A)→ T 0(A′′)→ T (A′)→ · · ·
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is exact, and such that the δi are compatible with morphisms of short exact
sequences in the obvious way.

Definition 4.10. A δ-functor (T i)i from A to B is called universal, if for
every δ-functor (Si)i and every morphism f0 : T 0 → S0 of functors, there
exist unique morphisms f i : T i → Si of functors for al i > 0, such that the
f i, i ≥ 0 are compatible with the boundary maps δi of the two δ-functors for
each short exact sequence in A.

The definition implies that given a (left exact) functor F , any two universal

δ-functors (T i)i, (T ′i)i with T 0 = T ′0 = F are isomorphic (in the obvious
sense) via a unique isomorphism.

Definition 4.11. A functor F : A → B is called effaceable, if for every X
in A there exists a monomorphism ι : X ↪→ A with F (ι) = 0.

A particular case is the situation where each X admits a monomorphism
to an object I with F (I) = 0.

Proposition 4.12. Let (T i)i be a δ-functor from A to B such that for every
i > 0, the functor T i is effaceable. Then (T i)i is a universal δ-functor.

Reference: [We] Thm. 2.4.7, Ex. 2.4.5.

(4.4) Injective objects.

Let A be an abelian category.

Definition 4.13. An object I in A is called injective, if the functor X 7→
HomA(X, I) is exact.

If I is injective, then every short exact sequence 0→ I → A→ A′′ → 0 in
A splits. Conversely, if I is an object such that every short exact sequence
0→ I → A→ A′′ → 0 splits, then I is injective.

Definition 4.14. Let X ∈ A. An injective resolution of X is an exact
sequence

0→ X → I0 → I1 → I2 → · · ·
in A, where every Ii is injective.

Definition 4.15. We say that the category A has enough injectives if
for every object X there exists a monomorphism X ↪→ I from X into an
injective object I. Equivalently: Every object has an injective resolution.

The categories of abelian groups, of R-modules for a ring R, of abelian
sheaves on a topological space, and more generally of OX -modules on a
ringed space X all have enough injective objects.

Dually, we have the notion of projective object (i.e., P such that HomA(P,−)
is exact), of projective resolution · · · → P1 → P0 → A → 0, and of abelian
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categories with enough projective objects. For a ring R, the category of R-
modules clearly has enough projectives, since every free module is projective,
and every module admits an epimorphism from a free module. Categories
of sheaves of abelian groups or OX -modules typically do not have enough
projectives.

(4.5) Right derived functors.
June 26,
2019 Theorem 4.16. Let F : A → B be a left exact functor, and assume that A

has enough injectives.
For each A ∈ A, fix an injective resolution 0→ A→ I•, and define

RiF (A) = hi(F (I•)), i ≥ 0,

where F (I•) denotes the complex obtained by applying the functor to all Ii

and to the differentials of the complex Ibullet. Then:

(1) The RiF are additive functors A → B, and RiFX is independent of the
choice of injective resolution of X up to natural isomorphism.

(2) We have an isomorphism F ∼= R0F of functors.

(3) For I injective, we have RiFI = 0 for all i > 0.

(4) The family (RiF )i is a universal δ-functor.

We call the RiF the right derived functors of F .

Definition 4.17. Let F be a left exact functor as above. We say that an
object A ∈ A is F -acyclic, if RiF (A) = 0 for all i > 0.

Definition 4.18. Let F be a left exact functor as above, and let A ∈ A.
An F -acyclic resolution of A is an exact sequence 0→ A→ J0 → J1 → · · ·
where all J i are F -acyclic.

Proposition 4.19. Let F be a left exact functor as above, and let A ∈ A.
Let 0 → A → J0 → J1 → · · · be an F -acyclic resolution. Then we have
natural isomorphisms RiF (A) = hi(F (J•)), i.e., we can compute RiF (A)
by an F -acyclic resolution.

4.2. Cohomology of sheaves.
General reference: [H] Ch. III, [Stacks] Ch. 20, 29.

(4.6) Cohomology groups.

Let X be a topological space. Denote by (AbX) the category of abelian
sheaves (i.e., sheaves of abelian groups) on X. We have the global section
functor

Γ: (AbX)→ (Ab), F 7→ Γ(X,F ),
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to the category of abelian groups. This is a left exact functor, and we
denote its right derived functors by H i(X,−). We call H i(X,F ) the i-th
cohomology group of X with coefficients in F .

Example 4.20. For a field k, H1(P1
k,O(−2)) 6= 0.

July 1,
2019

(4.7) Flasque sheaves.

Definition 4.21. Let X be a topological space. A sheaf F on X is called
flasque (or flabby), if all restriction maps F (U) → F (V ) for V ⊆ U ⊆ X
open are surjective.

Lemma 4.22. Let X be a ringed space. Let F be an injective object in
the category of OX-modules. Then F is flasque.

Proposition 4.23. Let X be a topological space, and let F be a flasque
abelian sheaf on X. Then F is Γ-acyclic, i.e., H i(X,F ) = 0 for all i > 0.

Corollary 4.24. Let X be a ringed space. The right derived functors of
the global section functor from the category of OX-modules to the category
of abelian groups can naturally be identified with H i(X,−).

It follows that for an OX-module F the cohomology groups H i(X,F )
carry a natural Γ(X,OX)-module structure.

(4.8) Grothendieck vanishing.

Reference: [H] III.2.

Lemma 4.25. Let X be a topological space, and let ι : Y → X be the
inclusion of a closed subset Y of X. Let F be an abelian sheaf on X. Then
there are natural isomorphisms

H i(Y,F ) = H i(X, ι∗F ), i ≥ 0.

Theorem 4.26. (Grothendieck) Let X be a noetherian topological space
(i.e., the descending chain condition holds for closed subsets of X), let n =
dimX, and let F be a sheaf of abelian groups on X. Then

H i(X,F ) = 0 for all i > n.

July 3,
2019

4.3. Čech cohomology.
Reference: [H] III.4, [Stacks] 01ED (and following sections); a classical

reference is [Go].
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(4.9) Čech cohomology groups.

Let X be a topological space, and let F be an abelian sheaf on X. (The
definitions below can be made more generally for presheaves.)

Let U = (Ui)i∈I be an open cover of X. We fix a total order of the index
set I (but see below for a sketch that the results are independent of this).
For i0, . . . , ip ∈ I, we write Ui0...ip :=

⋂p
ν=0 Uiν .

We define

Cp(U ,F ) =
∏

i0<···<ip

Γ(Ui0...ip ,F )

and

d : Cp(U ,F )→ Cp+1(U ,F ), (si)i 7→

(
p+1∑
ν=0

(−1)νsi0...îν ...ip |Ui

)
i

,

where ·̂ indicates that the corresponding index is omitted. One checks that
d ◦ d = 0, so we obtain a complex, the so-called Čech complex for the cover
U with coefficients in F .

Definition 4.27. The Čech cohomology groups for U with coefficients in
F are defined as

Ȟp(U ,F ) = hp(C•(U ,F )), p ≥ 0.

Since F is a sheaf, we have Ȟ0(U ,F ) = Γ(X,F ) = H0(X,F ).

(4.10) The “full” Čech complex.

Instead of the “alternating” (or “ordered”) Čech complex as above, we can
also consider the “full” Čech complex

Cpf (U ,F ) =
∏

i0,...,ip

Γ(Ui0...ip ,F ),

with differentials defined by the same formula as above. Then the projec-
tion C•f (U ,F ) → C•(U ,F ) is a homotopy equivalence, with “homotopy
inverse” given by

(si)i 7→ (ti)i,

where ti = 0 whenever two entries in the multi-index i coincide, and oth-
erwise ti = sgn(σ)sσ(i), where σ is the permutation such that σ(i) is in
increasing order.

In particular, we have natural isomorphisms between the cohomology
groups of the two complexes. So we also see that the Čech cohomology
groups as defined above are independent of the choice of order on I.

(4.11) Passing to refinements.
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Definition 4.28. A refinement of a cover U = (Ui)i of X is a cover V =
(Vj)j∈J (with J totally ordered) together with a map λ : J → I respecting the
orders on I and J such that Vj ⊆ Uλ(j) for every j ∈ J .

Given a refinement V of U , one obtains a natural map (using restriction
of sections to smaller open subsets)

Ȟp(U ,F )→ Ȟp(V ,F ).

We can pass to the colimit over all these maps given by refinements, and
define

Ȟp(X,F ) := colim
U

Ȟp(U ,F ),

the p-th Čech cohomology group of X with coefficients in F .

Proposition 4.29. Let 0→ F ′ → F → F ′′ → 0 be a short exact sequence
of abelian sheaves on X. Then there exists a homomorphism δ : Γ(X,F ′′)→
Ȟ1(X,F ) such that the sequence

0→Γ(X,F ′)→ Γ(X,F )→ Γ(X,F ′′)

→Ȟ1(X,F ′)→ Ȟ1(X,F )→ Ȟ1(X,F ′′)

is exact. (But note that the sequence does not continue after Ȟ1(X,F ′′).)

(4.12) A sheaf version of the Čech complex.

We define a sheaf version of the Čech complex as follows:

C p(U ,F ) =
∏

i=(i0<···<ip)

ji,∗(F|Ui),

with differentials defined by (basically) the same formula as above. Here ji
denotes the inclusion Ui ↪→ X.

We have a natural map F → C 0(U ,F ), which on an open V is given by
s 7→ (s|Ui∩V )i.

Proposition 4.30. The sequence 0 → F → C 0(U ,F ) → C 1(U ,F ) →
· · · is exact.

Proposition 4.31. If F is flasque, then all C p(U ,F ) are flasque, and
Ȟp(U ,F ) = 0 for all p > 0.

Proposition 4.32. For every i, there is a natural map Ȟ i(U ,F ) →
H i(X,F ). These maps are compatible with refinements, so we obtain a
natural map Ȟ i(X,F )→ H i(X,F ). These maps are functorial in F .

Proposition 4.33. For i = 0, 1, the natural map Ȟ i(X,F ) → H i(X,F )
is an isomorphism.

July 8,
2019
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(4.13) Vanishing of cohomology of quasi-coherent sheaves on affine
schemes.

Theorem 4.34. Let X be an affine scheme, and let F be a quasi-coherent
OX-module. Then Ȟ i(X,F ) = 0 for all i > 0.

From this theorem, if follows immediately (using the above results) that
H1(X,F ) = 0 for X affine and F quasi-coherent. In particular, the global
section functor on X preserves exactness of every short exact sequence where
the left hand term is a quasi-coherent OX -module. But more is true:

Theorem 4.35. Let X be an affine scheme, and let F be a quasi-coherent
OX-module. Then H i(X,F ) = 0 for all i > 0.

This follows from the above using Cartan’s Theorem (see e.g., [Go] II
Thm. 5.9.2, [Stacks] 01EO):

Theorem 4.36. Let X be a ringed space, and let B be a basis of the
topology of X which is stable under finite intersections. Let F be an OX-
module. Assume that Ȟ i(U,F ) = 0 for all i > 0. Then
(1) we have H i(U,F ) = 0 for all i > 0,
(2) The natural homomorphisms Ȟ i(U ,F )→ H i(X,F ) are isomorphisms

for all i ≥ 0 and all covers U of X consisting of elements of B.
(3) The natural homomorphisms Ȟ i(X,F )→ H i(X,F ) are isomorphisms

for all i ≥ 0.

For X noetherian, there is another approach which relies on the following
result (see [H] III.3):

Proposition 4.37. Let A be a noetherian ring, X = SpecA, and let I be

an injective A-module. Then Ĩ is a flasque OX-module.

From either approach, we also obtain the following consequence (of course,
the second approach again works only in the noetherian situation):

Theorem 4.38. Let X be a separated scheme, and let U be a cover of
X by affine open subschemes. Let F be a quasi-coherent OX-module. Then
the natural homomorphisms Ȟ i(U ,F ) → H i(X,F ) are isomorphisms for
all i ≥ 0.

Corollary 4.39. Let X be a separated scheme which can be covered by
n+ 1 affine open subschemes. Then H i(X,F ) = 0 for every quasi-coherent
OX-module F and every i > n.

July 10,
2019

(4.14) The cohomology of line bundles on projective space.

References: [H] III.5, [Stacks] 01XS.
Using Čech cohomology, we can compute the cohomology of line bundles

on projective space. It is best to aggregate the results for all O(d), as we
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have already seen for their global sections, a result which we repeat as the
first statement below.

Theorem 4.40. Let A be a noetherian ring, n ≥ 1, S = [T0, . . . , Tn],
X = Proj(S) = PnA. Then
(1) There is a natural isomorphism S ∼=

⊕
d∈ZH

0(X,O(d)).

(2) For i 6= 0, n and all d ∈ Z we have H i(X,O(d)) = 0.
(3) There is a natural isomorphism Hn(X,O(−n− 1)) ∼= A.
(4) For every r, there is a perfect pairing

H0(X,O(r))×Hn(X,O(−r − n− 1))→ Hn(X,O(−n− 1)) ∼= A,

i.e., a bilinear map which induces isomorphisms

H0(X,O(r)) ∼= Hn(X,O(−r − n− 1))∨

and
H0(X,O(r))∨ ∼= Hn(X,O(−r − n− 1))

(where −vee = HomA(−, A) denotes the A-module dual).

(4.15) Finiteness of cohomology of coherent OX-modules on pro-
jective schemes.

Definition 4.41. Let X be a noetherian scheme. An OX-module F is
called coherent, if it is quasi-coherent and of finite type.

Let A be a noetherian ring.

Lemma 4.42. Let X = PnA, and let F be a coherent OX-module. Then
there exist integers d1, . . . , ds and a surjective OX-module homomorphism

n⊕
i=1

O(di) � F .

Theorem 4.43. Let X be a projective A-scheme, and let F be a coherent
OX-module. Then for all i ≥ 0, the A-module H i(X,F ) is finitely generated.

At this point it is not hard to prove that higher derived images Rif∗F of
a coherent OX -module under a projective morphism f : X → Y are coherent
(see [H] III.8).

(4.16) The Theorem of Riemann–Roch revisited.

Reference: [H] III.7, IV.1.
Recall the Theorem of Riemann–Roch that we stated above (Thm. 2.9).

In this section, we prove a preliminary version, which also gives a more
conceptual view on the “error term” dim Γ(X,O(K−D)) (with notation as
above).

Let k be an algebraically closed field.
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Definition 4.44. Let X be a projective k-scheme, and let F be a coherent
OX-module. We call

χ(F ) =
∑
i≥0

(−1)i dimkH
i(X,F )

the Euler characteristic of F .

Note that the sum is finite (by the Grothendieck vanishing theorem, The-
orem 4.26) and that each term is finite by the results of the previous section.

Now let X/k be a smooth, projective, connected curve. Then χ(F ) =
dimkH

0(X,F )− dimkH
1(X,F ).

The following theorem is the preliminary version of the Theorem of Riemann–
Roch mentioned above.

Theorem 4.45. Let L be a line bundle on X. Then

χ(L ) = deg(L ) + χ(OX).

Now we can define the genus of X as g := 1− χ(OX) = dimkH
1(X,OX),

and choose for K a divisor with O(K) ∼= Ω1
X/k.

From the above, we immediately get

Corollary 4.46. (Theorem of Riemann) Let L be a line bundle on X.
Then

dimkH
0(X,L ) ≥ deg(L ) + 1− g.

Furthermore, the Theorem of Riemann–Roch will follow from the Serre
duality theorem (which will be discussed in the sequel to this course, Alge-
braic Geometry 3).

Theorem 4.47. (Serre duality) Let X be a smooth projective curve as
above. For every line bundle L on X, there is a natural isomorphism

H1(X,L ) ∼= H0(X,L −1 ⊗ Ω1
X/k)

∨

of k-vector spaces (where −∨ denotes the dual k-vector space).

A similar statement holds for every locally free sheaf L (and the theorem
can be vastly further generalized).
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